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Abstract
We report novel direct quantitative comparisons between 3D profiling
measurements and simulations of human vocal fold vibrations. Until now,
in human vocal folds research, only imaging in a horizontal plane was
possible. However, for the investigation of several diseases, depth information
is needed, especially when the two folds act differently, e.g. in the case of
tumour growth. Recently, with our novel depth-kymographic laryngoscope, we
obtained calibrated data about the horizontal and vertical positions of the visible
surface of the vibrating vocal folds. In order to find relations with physical
parameters such as elasticity and damping constants, we numerically simulated
the horizontal and vertical positions and movements of the human vocal folds
while vibrating and investigated the effect of varying several parameters on the
characteristics of the phonation: the masses and their dimensions, the respective
forces and pressures, and the details of the vocal tract compartments. Direct
one-to-one comparison with measured 3D positions presents—for the first
time—a direct means of validation of these calculations. This may start a new
field in vocal folds research.

M This article features online multimedia enhancements

(Some figures in this article are in colour only in the electronic version)

1. Introduction

We are interested in the horizontal and vertical positions and movements of the human vocal
folds. Recently, we developed for this purpose a novel fast 3D profiling laryngoscope (‘depth-
kymograph’) (George et al 2008). Since the introduction of videokymography (VKG) (Svec
and Schutte 1996, Schutte et al 1998, Svec et al 2007, 2009), in which one single line crossing
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Figure 1. (a). Depth-kymography. A laser light sheet is projected onto the vocal folds, and the
light reflected at a small angle (triangulation angle) is analysed using a separate detector array
(in general). For clarity, in this sketch the optics from the mirrors on, and the vocal folds, have
been rotated 90◦ in the horizontal plane, with respect to the real situation in the mouth. In the
present experimental situation, for the detector array, a high-speed Kymo camera is used, and a
semi-transparent mirror is absent. The three spatial dimensions are (1) along the laser line, (2) the
depth and (3) by shifting the laser line perpendicular to the glottal midline. (b) Depth-kymography.
Time recording of a registration. Horizontal axis: distance to the glottal midline (mm); vertical
axis: profile height (mm). Third axis: time, interval = 0.25 ms (4 kHz sampling rate).

the two vocal folds is imaged over time using a fast camera system, enabling to study the
horizontal movements of the vocal folds as a function of time, the third dimension (vertical)
appears to be physiologically interesting as well. The novel depth-kymograph makes use of
the same single line imaging as normal (2D) VKG. See figure 1. In section 2.1, we will give
a more detailed description.

With three spatial dimensions we mean (1) the imaging line across the two vocal folds,
(2) the depth profile of the surface along this line and (3) shifting (presently manually) this line
over the vocal folds, perpendicular to the glottal midline, in the anterior–posterior direction.

A distinctable vertical displacement of the vocal fold, mainly of its mucosa, is clinically
related to loosely connected mucos to the underlying vocal fold body. This contributes
typically to a better and more defined closed quotient of the glottal cycle. Establishing the
extent (height) and pattern of the profile incorporates a clue of significance about the health
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Figure 2. Outline of the vocal fold two-mass model. Only one vocal fold is shown. ml is the
midline of the glottis and provides the 0-point for the x-coordinates. Mass m1 is connected to the
wall (at the side and below) with the spring forces f1x and f1y, and the damping forces g1x and g1y..
Mass m2 is connected to m1 by coupling the forces fc and gc which both have x- and y-components.
Mass m2 is also connected to the sidewall by the forces f2x and g2x. d1 and d2 are the thicknesses
of the masses, and w1 and w2 are their widths. The third dimension (length of the glottis) is lg (not
drawn).

and possibilities of the tissue. Polyps, abscesses, carcinoma, asymmetries and other voice
disorders, encountered in singing and speech, will be assessed much more clearly. It becomes
gradually better known how important the glottis closure by the mucosal wave is. The present
tool of depth-videokymography gives us an excellent tool for examining this clinical detail of
voice production.

The first results of this 3D method make it worthwhile to find a method that would enable
us to relate the 3D findings to physiologically interesting data, like material constants, such
as stiffness and viscosity data of the vocal fold masses. For this purpose, we investigated
the potential of numerical 3D simulations of the dynamical positions and movements of the
vocal folds during self-sustained phonation. Since these simulations are based on physical
reasoning, constants and expressions, in principle, relations of the measurement details with
physical constants can be made.

Simulations of the dynamics of the human vocal folds have been the subject of a series
of papers, starting from Flanagan (1968), Flanagan and Cherry (1969) and Dudgeon (1970).
This model makes use of a single vibrating mass for each vocal fold, subject to spring forces
connecting it to the wall and pressure forces due to air pressures in the vocal tract. This mass
was allowed to move in horizontal directions only. The shape of the vocal tract (lengths and
cross sections of compartments) could be altered, and in doing so, sound could be obtained.

Since the one-mass model turned out to be not sufficient to produce phonation with
adequate physiological accuracy, multi-mass models were introduced (Ishizaka 1966, Ishizaka
and Flanagan 1972). Here the masses are connected to the surrounding walls and to each other
by spring-and-damper force combinations. This model is schematically shown in figure 2.
A thorough account of this approach was given by Ishizaka and Flanagan (1972), albeit
for horizontal freedom only (no vertical forces or movements). These authors provided the
framework for all the following modelling: they gave expressions for the pressures in the
various parts of the vocal duct and for the spring-and-damper forces. For the vocal tract they
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introduced a simple electronic analogue circuit model, consisting of a transmission line of
T-circuits representing cylindrical containers with rigid walls, each containing air resistance
and inertia components in both ‘horizontal’ branches of the T and an air compliance in the
‘vertical’ branch. The mouth was modelled according to the radiation load equal to that of a
circular piston in an infinite baffle, as an air resistance and inertia in parallel. Two equations of
motion were used for the horizontal (X)-coordinate of the two masses, respectively. The forces
were exerted by the connecting springs and dampers, and by the pressure force exerted on the
surface areas of the masses, exposed to the air flow. With this model, they studied self-sustained
oscillation and phonation for various vowels and they were able to extract characteristic values
for the parameters used in the model. A multiple-mass model was introduced by Titze, in
which a set of up to 16 masses were handled, followed by a continuum-mass model (Titze
1973, 1974, 1984, Titze and Strong 1975).

These simulations revealed that the two-mass model might be too simple to be capable of
simulating the laryngeal movements to fine physiological details, but that it can be used in a
satisfactory way as far as the production of phonation by speech synthesis is concerned. This
was the underlying justification of the work of Koizumi and co-workers (Koizumi et al 1987,
1989, Nudelman and Hoyt 1989). They added vertical freedom to the Ishizaka–Flanagan
model, in the form of a varying vertical (Y)-coordinate and of vertical components to the
spring-and-damper force combinations, but they discarded the direct connection of the upper
mass to the sidewall. Further, they allowed the masses to vary in depth (and in mass, but not
in width), under the constraint that the total mass should remain constant. For the expressions
and numerical values of the spring-and-damper forces, the pressures and pressure forces, they
relied on the work of Ishizaka and Flanagan (1972). Numerical details for the vocal tract
components (lengths and areas of components) were obtained from work published by Titze
and co-workers (Story et al 1996, 1998, Story and Titze 1998). The effect of yielding vocal
tract walls could be included as well, by using an adapted circuitry for the electrical analogue
of the vocal tract T-circuits (Ishizaka et al 1975).

Based on these previous models, we constructed a two-mass model, allowing vertical
freedom, with the possibility of mass transfer between the two masses during the vibrations.
In doing this, a description of a moving mucosal wave on top of the vocal folds could be
included.

2. Method

2.1. Experiments

Using the depth-kymograph (George et al 2008), we recorded depth-kymographic data of
various persons. The laryngoscope was inserted in the mouth, and the laser light was projected
as a line crossing both vocal folds, perpendicular to the glottal midline. The line was positioned
using the illumination of the conventional ‘horizontal’ kymograph system. All subjects gave
informed consent for these measurements.

In figure 1(a), an overview of the instrument is sketched. The laser projection optics
consists of a semiconductor laser, emitting at 635 nm, with 1.8 mW mm−2 power density,
together with an aspheric lens system to focus the beam onto the folds and a cylindrical lens
system for stretching the beam to a line across the vocal folds. These optics are mounted in
an extra optical tube, along the normal endoscope tube. The triangulation angle is about 8◦,
which appears to be the experimental maximum. The detection distance is 60–70 mm from the
endoscope tip, and the laser line is 18–20 mm long and about 0.4 mm wide. Detection takes
place using a high-speed colour camera (Wolf, HResEndocam 5562; 256 × 256 pixels), at a
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sampling rate of 4 kHz, via the normal endoscope channel. For simultaneous 2D kymographic
and stroboscopic imaging, we used a 300 W white light source, also coupled to the endoscope.
However, the 2D image can also be obtained from the depth-kymographic image, by adding
all intensity in the ‘column’ of pixels perpendicular to the ‘row’ of pixels with the laser beam
image. A typical width of the envelope of the image of one single point of the laser beam line
is 20 pixels.

Typically several seconds of phonation were recorded, and the resulting data were
processed using a dedicated algorithm and plotted as cross sections in a plane perpendicular
to the glottal midline, as a function of time (figure 1(b)). See George et al (2008) for more
details.

We have recorded the vocal fold vibrations of a number of subjects, all with normal vocal
folds. For now, for the comparison with simulations, we use only the measured results obtained
with one single male person, about 65 years of age, and with no laryngeal pathology leading to
vocal folds disorders (after usual laryngoscopic examination by an experienced laryngologist).
These recordings were chosen, since this person showed a left–right asymmetry in vertical
motions and profile, which was not seen with stroboscopy or ‘normal’ 2D kymography, looking
‘from above’ only.

2.2. Simulations

We investigated an extended model including the vertical dimension. We also included the
option to use both the widths and the depths of both masses as dynamic variables, so as to allow
mass transfer between the two masses. In addition, following Ishizaka and Flanagan (1972),
we added a spring-and-damper connection of the upper mass to the respective sidewall, since
we observed from our 3D measurements that this seems to be the case in reality as well. We
named this extended model the ‘combined model’. We designed the programming in such a
way that it would be easy to return to the two underlying more limited models. In figure 2, a
sketch of the model is shown. A full account of the model is given in the appendix.

Basically, for the iterations of the positions, eight variables are relevant: the horizontal (x)
and vertical (y) positions of the centre of mass of both masses and their thicknesses d and widths
w. With these eight variables, it is hard to obtain stable iteration solutions. However, since the
total mass has to be conserved and the upper mass always rests on top of the lower mass, two
of the variables can be skipped, leading to a slight increase in the stability only. Therefore, we
decided to reduce the number of variables to four, by investigating three situations (for each
mass):

S.1. variables x, y, w and d, with the constraint that at the wall side the mass is fixed;
S.2. variables x, y and d, but constant w and
S.3. constants d and w, thus implying a constant mass.

Apart from the extra freedom in the y-direction, the third situation corresponds to that of
Ishizaka and Flanagan (1972).

For typical input values of the parameters, we generally relied upon Ishizaka and Flanagan
(1972) and Koizumi et al (1987). Table 1 lists parameters used as inputs in the simulations, and
table 2 lists the variables resulting from the simulations. In addition, during the simulations,
all actual values for all coordinates, masses, pressures and flows, as functions of time, are
recorded in the form of plots or tables.

In the simulations, the time step for the calculations is chosen to be 4 μs or less. Output
time intervals (e.g. for plotting and frequency analysis) were of 50 μs.

The frequency analysis is done by fast Fourier transformations of the time signals of all
coordinates, pressures and flows, as the real Fourier input function, with zeros for the imaginary
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Table 1. Typical input parameters of the simulations (see also Ishizaka and Flanagan (1972) and
Koizumi et al (1987)).

Parameter Value Parameter Value

rhoA: air density (g cm−3) 0.001 02 mass 2: m20: mass in rest (g) 0.04
lambda: heat conduction coefficient (W (mK)−1) 0.026 - - - - -: d20: depth in rest (cm) 0.09
Cp: specific heat constant pressure (J kg K)−1) 1005 - - - - -: x20: x-position in rest (cm) 0.02
eta: adiabatic constant (–) 1.4 - - - - -: k2x: spring constant x (N m−1) 15
c: sound velocity (m s−1) 333 - - - - -: eta2x: nonlinear spring constant x (cm−2) 100
mu: air viscosity (Pa s) or (N s m−2) 1.8× 10−5 - - - - -: h2x: collision spring 180
rhoT: tissue density (g cm−3) 1.04 - - - - -: etah2x: nonlinear collision constant x (cm−2) 500
lg: glottis length (cm) 1.4 - - - - -: zeta2x: damping ratio x (–) 0.1
mass 1: m10: mass in rest (g) 0.09 coupling: kcx: spring constant x (N m−1) 15
- - - - -: d10: depth in rest (cm) 0.2 - - - - -: kcy: spring constant y (N m−1) 15
- - - - -: x10: x-position in rest (cm) 0.02 - - - - -: etacx: nonlinear spring constant x (cm−2) 100
- - - - -: y10: y-position in rest (cm) 0.15 - - - - -: etacy: nonlinear spring constant y (cm−2) 100
- - - - -: k1x: spring constant x (N m−1) 60 - - - - -: zetacx: damping ratio x (–) 0.7
- - - - -: k1y: spring constant y (N m−1) 100 - - - - -: zetacy: damping ratio y (–) 0.7
- - - - -: eta1x: nonlinear spring constant x (cm−2) 500 lungs: Plungs: pressure (Pa) 1000
- - - - -: eta1y: nonlinear spring constant y (cm−2) 100 - - - - -: Rlungs: resistance (kg (m4 s)−1) 8 × 105

- - - - -: h1x: collision spring constant x (N m−1) 180 trachea: length (cm) 5.0
- - - - -: etah1x: nonlinear collision constant x (cm−2) 500 - - - - -: area (cm2) 3.0
- - - - -: zeta1x: damping ratio x (–) 0.1 contraction: length (cm) 1.0
- - - - -: zeta1y: damping ratio y (–) 0.2 - - - - -: area at entrance (cm2) 0.5

- - - - -: area at mid point (cm2) 0.3
- - - - -: area at exit (cm2) 0.1
mouth: area (cm2) 2.0

Table 2. Output variables of the simulations.

Variable (o) Symbol Variable Symbol

Model codea DC flow (l s−1) DCF
Lower mass: (g) 〈m1〉 ± dm1 Mouth pressure: PresM (Pa) 〈MP〉 ± dMP

Horizontal position (mm) 〈x1〉 ± dx1 Mouth flow: FlowM (l s−1) 〈MF〉 ± dMF
Vertical position 〈y1〉 ± dy1 Frequencies: first peak (Hz) (FM1) 1st Freq
Slope dy1/dx1 Ratio Second/first, . . . , fifth/first peak intensity Rat.2/1 . . .

Thickness 〈d1〉 ± dd1 Glottis: closed quotient (%) Clos%
Width 〈w1〉 ± dw1 Phase delay upper vs. lower mass (degree) Ph.2/1

Upper mass (g) 〈m2〉 ± dm2 Averaged duration of open period (ms) AD; time open
Horizontal position (mm) 〈x2〉 ± dx2 Max. open width (mm) MW
Vertical position 〈y2〉 ± dy2 Max. open area (mm2) MA
Slope dy2/dx2
Thickness 〈d2〉 ± dd2
Width 〈w2〉 ± dw2

Notation: for variable x: 〈x〉 = time average; dx = amplitude of vibration during one cycle.
a Model code: ‘ABC’:
A = 1, 2, 3: according to Ishizaka and Flanagan, Koizumi and (present) combined model, respectively.
B = 1: lower mass: both width w and thickness d variable; vocal folds fixed at wall side (situation S1); 2: id.: width
constant, thickness variable (S2); 3: id.: width and thickness constant (S3).
C = 1, 2, 3: for upper mass, as with B (for lower mass).

part. The frequency spectra are then obtained as the modulus of the real and imaginary parts
of the Fourier output function. The maximum frequency fmax is normally chosen at 1 or
5 kHz, implying time steps of 1/(2fmax) = 500 and 200 μs. The frequency step is fmax/Nfreq,
with Nfreq the number of Fourier points. From the time signals, sound can be produced using
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the internal computer synthesizer, with a sampling rate of 11 025 s−1. As long as the elapsed
simulation time is shorter than the inserted sound period, the time signals are repeated.

Most of the simulations were performed without the option of yielding walls, since we
found that mostly the effects of inclusion of yielding walls were small to negligible and since
inclusion of yielding wall effects increased the calculation times considerably.

2.3. Comparison of simulations and measurements

The computer program produces images of the surface of the vocal folds along the laser line,
as a function of time. Afterwards, these subsequent images were combined to a movie, and
overlaid in the movie of the experimental data (available at stacks.iop.org/PMB/54/3955).

To obtain an optimum correspondence, first the frequency of the simulations was corrected
so as to match that of the measurements. This was done by adapting the masses and thicknesses
of the two masses. Among other options are the lengths of the vocal folds or the values of
the springs and dampers. In this case, for this subject, the correction factor was 0.80. It can
be seen in the movie that the frequencies of the measurements and the simulations still differ
slightly (240.2 versus 239.6 Hz). We did this deliberately, so as to show a gradual growth of
the respective phase difference.

Since in general the duration of the measured data will not correspond to an exact
integer multiple of the cycle period, in the overlay comparison procedure we skipped the
last incomplete cycle, in order to obtain a self-repeating in-phase sequence, needed for the
comparison with the simulated data.

2.3.1. Correspondence criterion. After matching the frequencies, the phases were matched
by shifting the phase of the measured data, so as to obtain a minimum value for the
correspondence criterion CC, which we simply defined as

CC = √
[

1

N

N∑
n=1

D(simulated − measured)2
n

]
, (1)

where D(· · ·)n stands for the actual smallest distance between the upper edge point of the
upper mass (modelled with rectangular cross section), nearest to the glottal midline, and the
measured depth-kymographic curve. The averaging summation is performed over all available
time points (n = 1, . . . , N) in all completed cycles of the measured data.

3. Results of simulations

As an example, plots of the simulations obtained with the parameters listed in table 1 are shown
in table 3 and figure 3. In this simulation, use has been made of the vocal tract area function,
listed by Story and Titze (Story and Titze 1998, Story et al 1996, 1998) as corresponding
to the vowel /o/. This function consists of 44 compartments (T-circuits), which makes the
pressures-and-flows array (equations (A.15) and (A.19)) to have dimensions 91 × 91, or 46 ×
46, when yielding wall effects (Ishizaka et al 1975) are taken into account or not, respectively.
In the present work, we did not include the yielding wall option, since we found that this
option has a relatively small effect only at the expense of considerably increased calculation
time.

We started the simulation from zero pressures and flows by linearly increasing the lung
pressure from zero to the parameter value as shown in table 1, within 5 ms.

Figure 3 contains time and frequency plots, for a time window between 380 and 400 ms
after the start. The available plots are plots of the six coordinate variables, the pressures at

http://stacks.iop.org/PMB/54/3955
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Figure 3. Coordinates as time and frequency functions. Model code: 312 (combined model;
situations: S2 and S1 for upper and lower mass (M2 and M1), respectively). Calculation time
step = 0.004 ms. Output time step (plotted points) = 0.05 ms (also used in Fourier transforms).
Fourier spectra (maximum frequency = 5000 Hz with 1024 points; time step = 0.100 ms). The
open glottis is indicated with shading. For clarity, the frequency spectra are peak-normalized and
shifted over multiples of 1/20 of the full horizontal and vertical scales.

Table 3. Output data of the simulation, shown in figure 3.

Lower mass Upper mass

Variable Initial Final Initial Final

Mass (g) 0.09 0.067 ± 0.008 0.04 0.063 ± 0.008
Horizontal position (mm)a 0.2 0.29 ± 0.38 0.2 0.32 ± 0.28
Vertical position 0 0.12 ± 0.58 2.9 3.08 ± 0.74
Thickness 2.0 1.55 ± 0.01 0.9 1.41 ± 0.18
Width 3.09 2.99 ± 0.33 3.05 3.05 ± 0
Slope dy/dxb 1.53 2.68

DC flow (l s−1) 0.20784
Mouth pressure 〈MP〉 (Pa) −0.040 ± 61.7
Mouth flow 〈MF〉 (l s−1) 0.194 ± 0.565
First frequency peak FM1 (Hz) 171.0
Peak ratios 2/1; 3/1; 4/1; 5/1 1.39; 1.13; 0.55; 1.03
Closure % (closed quotient) 17.3
Phase delay upper versus lower mass (degree) 45.1
Open glottis: 〈duration〉 (ms) 4.84
Id. max. area (mm2) 16.1

a From the edge of the glottis to the glottal midline.
b Vertical versus horizontal movement.

different positions along the air tract and the flows calculated for the lungs, the glottis and the
mouth, but we show here the time and frequency plots of the coordinates only.

From the panels it is seen that a vibration of the glottis has been developed, with a phase
delay between the two masses.

From the time development of the pressure or flow through the mouth, a sound signal can
be derived.
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For the simulations, a set of all nine combinations were made out of the three situations
(S1, S2, S3) as indicated above, for the two masses, in which the parameter values shown
in table 1 were taken as the ‘original’ situation. The ‘combined model’, as described in
the appendix, was compared with the Ishizaka–Flanagan and the Koizumi model in several
relevant situations. The following simulations were performed.

(1) Using the parameter values shown in table 1, several vocal tract area functions were
inserted. See table 4 for an overview. The area functions obtained by Story and Titze
(Story and Titze 1998, Story et al 1996, 1998) are of special interest, since the shape of
the vocal tract compartments differs considerably. It is expected that the intensity ratios
of the higher harmonics will differ accordingly.

(2) For all combinations, all parameters from the list shown in table 1 (from the glottal length
on) were varied around their original values by multiplying with ten different factors:
1.01, 0.1, 0.2, 0.5, 0.8, 1.2, 1.5, 2.0, 5.0 and 10.0, and compared with the ‘original’
combination (factor 1.0). The factor 1.01 was used especially to calculate relative slopes
of the changes in the variables upon variation of the parameters. Not all simulations
provided sustained vibrations, especially those with the factors 0.1 and 10. These can be
excluded afterwards by allowing only simulations with horizontal vibration amplitudes
for both masses larger than a specified value (e.g. 0.01 mm). This leads to 9 × 34 ×
9 simulations. In a 1.2 GHz computer, each simulation of 400 ms lasted about 2 min,
in total 230 h. Therefore, we included an option in our program to perform series of
simulations automatically.

(3) Since the parameter y0 of lower mass 1 has the ‘original’ value 0, it was treated separately
using an initial value of 0.05, which then was handled as in (1).

(4) Because with the procedure in (1), changing the mass or thickness implies a change in
the width (to keep the thickness or the mass constant respectively), we also performed
simulations in which the input values of both mass and thickness of the two masses were
altered together, both with factors 1.1 and 0.9. In these simulations, we only made changes
for the parameters mass, thickness and x-position at rest of both masses.

(5) The mouth is modelled using a flow resistance and inertia in parallel, see the appendix,
equation (A.12). This implies that for dc flows, the mouth would offer zero impedance
to the flow. This effect was investigated by adding a small resistance in series with the
inertia in the mouth.

We record the time development of all coordinates and masses, all pressures and flows
and the variables as mentioned in table 2, as functions of time and frequency.

The averaged values of the output variables and their amplitudes are written in an ASCII
file, and can be plotted in the form of ‘pivot plots’, containing the output variables V as
functions of a chosen input parameter P, in a dimensionless, normalized way (i.e. divided by
the values obtained with the ‘original’ situation), thus around the pivot value (1,1). There
is also the option of producing ‘slope plots’, which contains the normalized slopes of the
variables around the parameter values of the ‘original’ situation, in the form (dV/V)/(dP/P).

4. Discussion

Due to the large amount of available calculated data, we limit ourselves to a selection.
The model code is defined as ‘ABC’, with ‘A’ as the model; ‘A’ = 1, 2, 3: Ishizaka–

Flanagan, Koizumi and combined, respectively; ‘B’ and ‘C’ = 1, 2, 3 according to the three
situations S1, S2 and S3 mentioned above, for the lower and the upper mass (masses 1 and 2),
respectively.
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The calculation time step, the frequency time step and the total simulation time per
simulation were 4 μs, 200 μs and 400 ms, respectively. The frequency spectra are refreshed
each 20 ms.

Table 3 contains data of the output variables corresponding to the present simulations,
for model 312. In figure 3, the coordinates are plotted as a function of time (left panel) and
frequency (right panel). The grey shaded area in the time panel indicates the opening periods
of the glottis. The shape of the glottis edge function is not harmonic, since it is composed of the
vibrations of both masses. It is seen from the table that closure is obtained for both masses, but
shifted in time. Here, the total closure percentage (‘closed quotient’) is 17%. There is a phase
difference of about 45◦ between the two masses, and the closure of the glottis is obtained
by the successive closure of the two constituting masses (which can be seen from the x-
coordinates becoming negative). Although the coordinates have only one relevant frequency
peak, the pressures and flows have various higher harmonics, in general up into the kHz
region. This is probably related to the nonlinear behaviour of the vocal tract compartments. In
figure 8, we will address this point again.

Also, the vibration frequency spectra of the pressures and characteristic flows are available.
These spectra show a series of peaks, around 1 kHz and above, which can be assumed
to correspond to the formants of the sound. It is remarkable that the coordinates show a
single frequency peak only, while the flows and pressures have much more significant higher
harmonics. For the mouth pressure, the higher harmonics frequently have higher intensities
than the fundamental frequency (we will give results in figure 8).

In figure 4, a comparison of the various models is given. From top to bottom the panels
show (a) the masses, (b) the coordinates, (c) other variables such as the mouth pressure and
flow, and glottis variables, and (d) the ratios of the second, third, fourth and fifth frequency
peaks with that of the first peak. This first peak corresponds to the (nearly) sole peak in the
frequency spectra of the coordinates. The values shown in figure (b) are relative to those of
model 333 (reference values shown in the legend). Models 323 and 332 are equivalent to
model 333 and are therefore not listed.

In the plots, the average values—where relevant—are shown as bars, with error bars
denoting the amplitudes during the vibration cycles. The ‘original’ parameter situation
(table 1) is listed as ‘model’ 0. In several models, a dynamic redistribution of the total
mass takes place as compared with the original situation (as in model 111; see also
table 3), up to almost a reverse in masses in models 311 and 321. This effect was observed
in almost all simulations we performed. After the initial period of re-division, the masses
become practically constant, with small amplitudes, but the upper mass shows a considerable
exchange in thickness versus width.

In all models, the average mouth pressure is relatively small compared with the amplitude.
Sometimes it becomes even slightly negative, especially in the models with situation S1 for
the lower mass (in this submodel, mass 1 is fixed to the sidewall). This might be caused by
round-off errors in the simulations, due to the relatively large difference between the average
value and the amplitude.

The fact that the average value is so much smaller than the amplitude can be related to the
findings that professional singers might produce phonation with a large amplitude, together
with using a small quantity of air, thus being capable of sustaining the tone for a relatively
long time (Schutte 1986, Schutte and Miller 1986a, 1986b).

All simulations with the combined model produce similar average and amplitude values
for the different coordinates. The amplitudes are about 25% of the average values, indicating
a considerable vibration. This is also reflected in the values for the ratios of the vertical and
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Figure 6. Effects of different vocal tract area functions (see Titze and Strong 1975 and Titze 1984).
Model 312. The variable values are relative to the values of /o/. Note the differences in the mouth
pressure and the frequency peak intensity ratios.

the horizontal amplitudes, which mostly are larger than 1. It implies that for certain phonation
types, the vertical vibration is larger than the horizontal vibration.

The ratios of the frequency peak intensities (here for vocal tract area function /o/) indicate
that the higher harmonics have considerable significance, as could already be seen in figure 3.
We will discuss this further with figures 5 and 8.

In the following figures, model 312 is used, if not otherwise mentioned.
Mass and thickness of both masses are input parameters in the models. This implies

that when changing the rest mass of only one of the two masses, the width of that mass will
change as well, since the density will remain constant. Figure 5 shows the effect of changing
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Figure 7. Time and frequency spectra of the pressure in the mouth of three vowels: /i/, /o/ and
/a/, according to Story and Titze (Titze and Strong 1975, Titze 1984, Koizumi et al 1987). Model
312. Note the differences in the higher harmonics, at about 1 kHz and in the region of 3–5 kHz.

both the masses and thicknesses together (with +10%), keeping the width constant. The
relative changes can roughly be distinguished in two categories: about 0% change and about
10% change. The latter correspond to changes in the averaged masses and thicknesses and
their amplitudes, as could be expected. Also the frequency ratios show larger changes. The
changes are smaller for the x-, y- and w-coordinates of mass 1, and the x-coordinate of mass
2. Apparently, these variables are not very sensitive to this type of parameter changes. The
changes are also substantial for the average flow in the mouth, the frequency of the first peak
and the second to first peak ratio. That can be expected since the frequency is directly related
to the square root of the masses.

Figure 6 plots the effects of changing the vocal tract area function for different vowels:
/i/, /o/ and /a/, as defined by Story and Titze (1998), Story et al (1996, 1998), relative to the
results of one of those functions (/o/). The /i/- and /a/- vowels have larger amplitudes in
the thicknesses of both masses and larger slopes (ratios of vertical and horizontal amplitudes).
Significant differences also occur for the average mouth pressure and the peak intensity ratios.
It appears that functions /i/, /o/ and /a/ have increasing higher harmonics intensities in
the 0–1 kHz region, especially the fifth harmonic of function /a/. Other variables are not
particularly influenced by the choice of the vocal tract area function. This might indicate that
in those situations, the dynamics of the glottis part and the reaction of the vocal tract are not
very tightly coupled, meaning that the vibrations of the vocal folds can probably be considered
as a relatively independent driving motor for the air vibrations in the vocal tract.



3968 F F M de Mul et al

0

2

4

6

8

10

12

14

16

18

20

22

<
m

1
>

d
m

1

<
x
1

>

d
x
1

<
y
1

>

d
y
1

d
y
1

/d
x
1

<
d

1
>

d
d

1
<

w
1

>

d
w

1

<
m

2
>

d
m

2

<
x
2

>

d
x
2

<
y
2

>

d
y
2

d
y
2

/d
x
2

<
d

2
>

d
d

2

<
w

2
>

d
w

2

D
C

fl
o

w
<

P
re

s
M

>

d
P

re
s
M

<
F

lo
w

M
>

d
F

lo
w

M

1
s
t.

F
re

q
R

a
t.

2
/1

R
a

t.
3

/1

R
a

t.
4

/1

R
a

t.
5

/1

C
lo

s
.%

P
h

.2
-1

T
im

e
.o

p
e

n

M
a

x
.w

id
th

M
a

x
.a

re
a

variable

%
 c

h
a

n
g

e
 u

p
o

n
 1

 %
 p

a
ra

m
e

te
r 

v
a

ri
a

ti
o

n

lg

m10

d10

x10

y10

k1x

k1y

eta1x

eta1y

h1x

etah1x

zeta1x

zeta1y

m20

d20

x20

k2x

eta2x

h2x

etah2x

zeta2x

kcx

kcy

etacx

etacy

zetacx

zetacy

Plungs

Rlungs

Trach:L

Trach:A

Contr:L

Contr:Ain

Contr:Am

Contr:Aex

Mouth:A

Figure 8. Influence of variations of parameters (see legend) on the variables (at the horizontal
axis). Model 312. Cumulative offset: +0.5.

In figure 7, waveforms and frequency spectra for those three vowels are shown in more
detail. In the low-frequency region, below 1 kHz, vowel /i/ closely follows the fundamental
frequency of the glottis, while vowel /o/ has comparable intensities in the first few higher
harmonics, and vowel /a/ has a high intensity in the fourth harmonics around 1 kHz, at the
cost of the ground frequency intensity, probably corresponding to brilliance. The vowels /a/
and especially /i/ have higher harmonics in the intermediate region of 3–5 kHz.

In figure 8, the influence of variations of the parameters upon the variables is schematically
plotted, as the percentage of change upon 1% change in the parameter value. In the plot, the
parameters have cumulative offsets of +0.5. Most results are (much) smaller than unity,
except for changes in the frequency peak intensities. The parameters which also have large
significant effects are the length of the glottis (lg), the rest values of the masses, thicknesses and
x-coordinates of the two masses, and the driving lung pressure. The most sensitive variables
are the x- and y-coordinates of the two masses and the peak intensity ratios. These effects
need further study.
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Figure 9. Snapshots from the movie (available from stacks.iop.org/PMB/54/3955), made of
successive vertical cross sections of the simulations, during one vibration cycle. Curve: overlay of
the corresponding depth-kymographic measurement. One division = 1 mm. Filled shapes: actual
positions; open rectangles: positions at the start of simulations. Correspondence criterion value
(see section 2.3): CC = 0.45 mm. Note the exchange of mass between the two masses during the
cycle.

4.1. Comparison of simulations and measurements

Finally, in figure 9, we present overlays of depth measurements and simulations, in a plane
perpendicular to the glottal midline. We used the measured results obtained with one single
male person, about 65 years of age, and with no vocal folds disorders, for the comparison with
simulations. These recordings were chosen, since this person showed a left–right asymmetry
in vertical motions and profile, which could not be seen with stroboscopy or ‘normal’ 2D
kymography, since these techniques produce top view images only.

Figure 9 contains 12 events out of one of the vibration cycles. The measurements are
shown as a line, overlaying the two masses of the simulations. We have drawn the cross section
of the upper mass in the form of a half-ellipse, so as to resemble the real shape of that upper
mass (as assumed in the case of mucosal wave presence) more closely than the rectangle, used
in the model. The half-ellipse has a long axis equal to the width of the rectangle and the
short axis so as to keep the mass equal to that of the rectangle. In the accompanying movie
(available at stacks.iop.org/PMB/54/3955), this comparison is illustrated. The exchange of
mass between the two masses during the cycle is marked. The mass content of the upper mass
is higher when its vertical position is higher up.

http://stacks.iop.org/PMB/54/3955
http://stacks.iop.org/PMB/54/3955
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In section 2.3, the correspondence criterion for estimating the correspondence between the
measured data and the simulated data was introduced. This criterion determines the closest
distance between the upper surface of the vocal folds in measurements and simulations,
averaged over all available completed vibration cycles. For the situation, corresponding to
figure 9, the CC value was 0.45 mm. To obtain this value, first the parameters in the simulation
were adjusted so as to produce results with the proper frequency, corresponding to that of the
measurements (240.2 Hz), and secondly the phase was adjusted to that of the measurements
so as to obtain the minimum criterion value.

From the overlays shown in figure 9 and from the movie, it is seen that—at least for the
underlying measurements—the model needs some correction: the mass seems to be firmly
attached to its sidewall. This may indicate that for the upper mass, model situation S1 is most
appropriate. In addition, to incorporate mucosal wave presence as well, the shape of the upper
mass (now rectangular or half-elliptic) has to be reconsidered.

5. Conclusions

We summarize the results of this study as follows.

(1) With the ‘combined model’ as described, we were able to produce simulations that
resemble the horizontal and vertical vibrations of the vocal folds. It was also possible to
extract data about phonation frequencies and about pressures and flows throughout the
vocal air duct. We compared the results with previously published models and found
proper correspondence.

(2) With this model we investigated the effects of varying the physical parameters, such as
the driving lung pressure, the dimensions of the air duct compartments and the glottis,
on the variables of the vibrations, such as the masses and their dimensions, the coupling
elastic springs and dampers, the frequency spectra (peak height positions and ratios), and
found different results for different parameter/variable combinations.

(3) We also investigated how the adoption of different vocal tract area functions
(corresponding to different vowels) affected the frequency spectra for the sound
production.

(4) The developed computer program enables us to produce sound, by feeding the resulting
time recording of the signal produced for the pressure or the flow in the mouth, to a
software synthesizer, coupled to the computer’s (or external) speakers. Depending on the
quality of the audio system, the sound reasonably corresponds to expectations.

(5) We also produced overlays of pictures of vertical cross sections of the two-mass model,
while vibrating, with pictures taken from the depth-kymography measurements, and
combined those in a accompanying movie. After slight adjustment of the measured and
simulated frequencies, and of the phase delay, the overlapping of both images is very
good. This overlay method enables us to compare measurements and simulations in a
quantitative way. Hopefully, the method might trigger new series of research of vocal
fold vibrations.

(6) As a means to quantify the correspondence between measurements and simulations, we
introduced a correspondence criterion, being the shortest distance between the upper point
of the upper mass at the midline side and the measured curve of the surface of the vocal
folds, and averaged over as many vibration cycles as available.
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Appendix. Vocal folds dynamics model

We partly have used a model of Koizumi et al (Koizumi et al 1987, 1989, Nudelman and
Hoyt 1989), which in turn was based on the model of Ishizaka and Flanagan (1972). The
model consists of two masses on top of each other and connected by a spring-and-damper
combination, on each side of the vocal folds. Different from these previous models, both
masses are attached to the wall of the glottis by other spring-and-damper combinations. All
spring-and-damper combinations have a horizontal and vertical component. In figure 1, the
situation is sketched.

In principle, we consider all x- and y-coordinates of the two masses as variables in the
model. Only the length of the glottis lg, is taken constant (but can be used as a parameter), and
both the widths w and depths d can be taken as variables in the simulations. This differs from
the previous models.

To distinguish our model from those previous models, we will name it the ‘combined
model’.

The rest positions of all coordinates (x, y, d, w) are denoted with the subscript 0, and the
deviations from that rest position are indicated with a prime, e.g.

x(t) = x0 + x ′(t). (A.1)

The two masses are subject to three types of forces: spring forces (f), damping forces (g) and
forces exerted by air pressures (Fp). The spring forces are determined by the actual position
of the masses with respect to each other and (for the lower mass) to the walls of the glottis.
The damping forces are proportional to the actual velocity of the masses. The pressure forces
are determined by the actual areas of the masses exposed to the air pressures in the x- and
y-directions (which may vary according to the position and thickness of the masses), the
impedances for the air flow in the various compartments of the air duct and the air flow itself.
These impedances are flow resistances (R), inertias (L) and compliances (C). This means that
in the calculations, in each time step we have a double problem to solve.

• Calculation of the pressures and flows; this can be achieved by using an electrical analogue
with circuits for the pressures, flows and impedances.

• Solution of the equations of motion for the two masses; for this goal the actual values for
pressures and flows are needed.

The cross-sectional areas of the two parts of the glottis, when open, are given by

Agi(t) = Agi 0 + A′
gi(t), with Agi(t) = 2 lgxi(t), etc and i = 1, 2.

(A.2)

We have conservation of the total mass (ρ t is the tissue density in kg m−3):

m1 + m2 = constant, with mi = ρt lgdiwi, i = 1, 2, (A.3)

or

d1w1 + d2w2 = constant, with all variables d1, d2, w1 and w2 > 0. (A.4)
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The equations of motion are given by

EM1 ≡ m1ẍ
′
c1 + ṁ1ẋ

′
c1 + g1x + f1x + gcx + fcx − Fp,1x = 0

EM2 ≡ m1ÿ
′
c1 + ṁ1ẏ

′
c1 + g1y + f1y − gcy − fcy − Fp,1y = 0

EM3 ≡ m2ẍ
′
c2 + ṁ2ẋ

′
c2 + g2x + f2x − gcx − fcx − Fp,2x = 0

EM4 ≡ m2ÿ
′
c2 + ṁ2ẏ

′
c2 + gcy + fcy − Fp,2y = 0, y2 = y1 + d1 + d2,

(A.5)

with xc1, xc2, yc1 and yc2 the centre-of-mass coordinates, and f, g and Fp representing forces
exerted by springs, dampers and air pressures, respectively. (In their papers (Koizumi et al
1987, 1989), Koizumi et al did not use the centre-of-mass coordinates.)

The centre-of-mass coordinates and the spring and damping forces are given by

xc1 = x1 + w1/2, yc1 = y1 + d1/2, xc2 = x2 + w2/2, yc2 = y2 − d2/2,

f1x = k1xx
′
1

(
1 + η1xx

′2
1

)
, f1y = k1yy

′
1

(
1 + η1yy

′2
1

)
,

f2x = k2xx
′
2

(
1 + η2xx

′2
2

)
, f2y = 0,

fcx = kcxxc

(
1 + ηcxx

2
c

)
, xc = xc1 − xc2,

fcy = kcyyc

(
1 + ηcyy

2
c

)
, yc = 1

2 (d1 + d2),

g1x = r1x ẋ
′
c1, g1y = r1y ẏ

′
c1, g2x = r2x ẋ

′
c2, g2y = 0, gcx = rcx ẋc,

gcy = rcy ẏc,

rij = 2(qij + ζij )
√

kijmi (i = 1, 2, c; j = x, y).

(A.6)

where kij and ηij are linear and nonlinear spring constants and ζij are damping constants. The
value of qij is given by 1 if the masses are in the ‘closure’ condition, and 0 otherwise (‘open’).
For the coupling forces, closure is not applicable. In the closure condition, we have extra
repulsing spring forces, given by

fh,1x = h1xx1
(
1 + ηh,1xx

2
1

)
, fh,2x = h2xx2

(
1 + ηh,2xx

2
2

)
, (A.7)

to be added to f1x and f2x, respectively, and where now hix and ηh,ix (i = 1, 2) are the ‘extra’
spring constants in the ‘closure’ situation. In the Ishizaka–Flanagan model, no y-coordinates
or y-forces are present. In the Koizumi model, the forces f2x and g2x are absent, and the forces
do not work on the centre-of-masses.

The forces exerted by pressures are determined by the distribution of pressures over the
whole region (Ishizaka and Flanagan 1972). We denote by Ps the pressure at the beginning
of the contraction to the glottis, P11 and P12 at the entrance and exit of the lower mass in the
glottis, respectively, P21 and P22 the same for the upper mass and P1 at the expansion to the
vocal tract (Ishizaka and Flanagan 1972). The forces are given in tables 4 and 5.

The pressures can be expressed using flow resistances and inertias:

Rg = Rsg + Rm1 + Rg,mid + Rm2 + Rexp,

Lg = Lsg + Lm1 + Lm2,
(A.8)
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Table 4. Forces from pressures in the Ishizaka–Flanagan and Koizumi models.

Situation of
masses

F1x F1y F2x F2y

A

x1 >x2>0

Pm1

[K]:
P11(w10-x1’) lg

[I]: 0

Pm2

[K]:
(P12-P22). (x1’ x2’).l- g

[I]: 0

x1 =x2 >0

x2 >x1 >0

B
x1>0;

<0
Ps d1lg = A Ps d2lg

[K]: +Ps (x1’-x2’). lg

[I]: 0

C
x1<0;

>0
= B

[K]: P11w10 lg

[I]: 0
0 0

D
x1 and

= B = C 0 0

x2

x2

<0x2

In the column ‘Situation of masses’ the position of the two masses is sketched with respect to the midline of the
glottis. I = Ishizaka–Flanagan only; K = Koizumi only. Pm1 = 1/2(P11+P12)d1lg; Pm2 = 1/2(P21 + P22)d2lg.

Table 5. Forces from pressures in the combined model.

Situation of
masses

F1x F1y F2x F2y

A

x1 >x2>0

Pm1

P11.w1 lg

Pm2 P21(x1-x2).lg –P22 w2 lg
x1 = x2>0

= A

x2 >x1>0 P11.w1 lg -P12(x2-x1) lg

B
x1>0;
x2<0

Ps d1lg P11.w1 lg Ps d2 lg - P22 w2 lg+P21x1lg

C
x1<0;
x2>0

= B P11(w10+x10) lg – P12 x2 lg 0 - P22 w2 lg

D
x1 and
x2 <0

= B P11(w10+x10) lg 0
- P22 w2 lg

In case of closure, wi is maximum (then wi = wi0 + xi0, provided that wi is taken as variable). For Pm1 and Pm2, see
table 4.

with (Ishizaka and Flanagan 1972)

Rsg = 1.37
ρa

2

|Ug|
A2

g1

; Lsg =
∫ lc

0

ρa dy

Ac(y)

Rm,i = 12μ.l2
gdi

A3
gi

; Lmi = ρadi

Agi

; i = 1, 2

Rmid = 1

2
ρa|Ug|.

[
A−2

g2 − A−2
g1

]
Rexp = −1

2
ρa

|Ug|
A2

g2

· 2
Ag2

At

(
1 − Ag2

At

)
,

(A.9)

with ρa the air density (kg m−3) and μ the air viscosity (Pa s). For At, the cross-sectional
area of the first component of the vocal tract (first T-circuit) can be taken. It is seen that some
resistances are flow dependent, and therefore, the circuitry is not linear, as in electrical circuits.
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text. After Ishizaka and Flanagan (1972), Titze (1973, 1974, 1984), Titze and Strong (1975) and
Koizumi et al (1987).

This leads to the following scheme for calculating the pressures in the glottis:

Ps − P11 = RsgUg + LsgVg

P11 − P12 = Rm,1Ug + Lm,1Vg

P12 − P21 = RmidUg

P21 − P22 = Rm,2Ug + Lm,2Vg

P22 − Pt = RexpUg

(A.10)

where Ug is the glottis air flow (m3 s−1), V stands for dU/dt and the subscripts c, g and t
refer to the contraction part, the glottis and the expansion part, respectively. Ac is the cross-
sectional area (dependent on the y-coordinate) of the contraction part. Ac and lc refer to the
cross-sectional area and length of the contraction part before the glottis, respectively. At is the
area of the expansion opening after leaving the glottis.

In order to avoid singularities at the closure point, we inserted a smoothing factor CF,
given by

CF = 1 if x1 > s · x10; with 0 < s < 1,

= 1

2

(
1 +

x1

2s · x10

)
if |x1| � s · x10

= 0 if x1 < −s · x10 (A.11)

and analogously for x2. Normally we choose s = 0.01.
We incorporated two options for the widths of the masses:

• variable width, according to the x-variable, thus setting wi(t) + xi(t) = w0 + x0,

• constant width, thus with wi(t) = w0.

Both options have different consequences for the distribution of the total mass over the two
masses. The first option implies that the wall side of the mass is fixed.

For the calculation of the pressures and the flows, we adopted a circuit model, as described
in figure 10. It is an electrical analogue, consisting of a series of blocks, each containing
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resistances (R), inertias (L) and compliances (C), based on a similar model of Ishizaka and
Flanagan (1972). The trachea part contains one T-circuit compartment and the vocal tract part
contains several T-circuit compartments, each with its own characteristics, depending on the
sound to be phonated.

The details of the various components of the T-circuits are (Ishizaka and Flanagan 1972)

Ri = Sili

A2
i

√
1

2
ρaμω; Li = ρali

Ai

; Ci = Aili

ρac2
, (A.12)

with c the sound velocity (m s−1), and li, Si and Ai the length, circumference and cross-
sectional area, respectively, of the vocal tract segment, imagined as a cylinder compartment.
The variables R, L and C have units (kg (m4 s)−1), (kg m−4) and (m4 s2 kg−1) respectively. The
initial frequency ω is given by the eigenfrequency of the set of masses:

ω =
√

k1x + kcx + k2x

m1 + m2
. (A.13)

The values for the lengths and areas of the compartments of the vocal tract depend on the
phonation and can be found in Story and Titze (1998) and Story et al (1996, 1998). We
included an extra resistance Rp for calculation reasons. The right vertical part of the T in
the circuit allows us to include effects of yielding walls (Rw,Lw,Cw). Details are given by
Ishizaka et al (1975).

The mouth is modelled with a resistance RM and an inertia LM in parallel (Flanagan 1968,
Flanagan and Cherry 1969, Ishizaka 1966, Dudgeon 1970, Ishizaka and Flanagan 1972), as
the load of a circular piston in an infinite baffle with the cross-sectional area AM (which may
be equal to that of the final tract compartment):

RM = 128ρac

9π2AM

; LM = 8ρa

3π
√

πAM

. (A.14)

The complete electrical analogue is shown in figure 10 for N compartments in the vocal tract.
We have a set of 2(N + 1) linear circuit equations to solve. The circuit equations are

U0,0 : −PL +

(
RL +

1

2
Ri,0

)
U0,0 +

1

2
Li,0V0,0 +

1

Ci,0

∫
[U0,0 − U0,1] dt

+ Rp,0(U0,0 − U0,1) = 0

Un,0 : −Rw,n−1(Un−1,1 − Un,0) − 1

Cw,n−1

∫
[Un−1,1 − Un,0] dt − Lw,n−1(Vn−1,0 − Vn,0)

+
1

2
(Ri,n−1 + 2ZRg + Ri,n)Un,0 +

1

2
(Li,n−1 + 2ZLg + Li,n)Vn,0

+ Rp,n(Un,0 − Un,1) +
1

Ci,n

∫
[Un,0 − Un,1] dt = 0 for n = 1, . . . , N

Un,1 : − 1

Ci,n

∫
[Un,0 − Un,1] dt − Rp,n(Un,0 − Un,1) + Lw,n(Vn,1 − Vn+1,0)

+
1

Cw,n

∫
[Un,1 − Un+1,0]dt + Rw,n(Un,1 − Un+1,0) = 0

for n = 0, 1, . . . , N

UN+1,0 : −Rw,N(UN,1 − UN+1,0) − 1

Cw,N

∫
[UN,1 − UN+1,0] dt − Lw,N(VN,0 − VN+1,0)

+

(
1

2
Ri,N + RM

)
UN+1,0 − RMUN+1,1 +

1

2
Li,NVN+1,0 = 0

UN+1,1 : −RM(UN+1,0 − UN+1,1) + LMVN+1,1 = 0 (A.15)
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where circuits N + 1,0 and N + 1,1 denote the pre-mouth and mouth regions, respectively, and
where zRg = Rg and zLg = Lg for n = 1 (glottis), and zRg = 0 and zLg = 0 otherwise. Since
usually the vocal tract area functions, as published by Titze et al (Story et al 1996, 1998, Story
and Titze 1998), may have about 45 compartments, the complete array may contain about 92
linear equations with 92 unknown variables to solve, each time step over and over.

In the simulations, the first and second time derivatives ẊandẌ of a variable X are
calculated as

Ẋ(t) = X(t) − X(t − �t)

�t

Ẍ(t) = X(t) − 2X(t − �t) + X(t − 2�t)

(�t)2
,

(A.16)

where �t is the time step. The time integral is evaluated as∫ t

0
X(t) · dt =

[
X(t) +

K∑
k=1

X(t − i · �t)

]
· �t, with K = t

�t
. (A.17)

In the calculations of pressures and flows, the values obtained at previous times are added to
the right-hand side quantities of the equations. This set of equations can be solved analytically
using band-matrix algorithms.

The four equations of motion have to be solved in an iterative way, using x1, x2, y1 and
d1 as the variables. Then y2 and d2 are known using the constraints in equations (A.3) and
(A.4). The iterative procedure is like the Newton–Raphson algorithm, in which the variables
subsequently are varied around their previous value, until

4∑
k=1

(EMk)
2 = minimum (A.18)

is reached. In doing so, the respective step sizes are gradually reduced and the iteration process
is repeated until all step sizes are smaller than the original values times a small number (order
10−6).

In case the effects of yielding walls are negligible or not present, we can simplify equation
(A.15) to

U0 : −PL +

(
RL +

1

2
Ri,0

)
U0 +

1

2
Li,0V0 + Rp,0(U0 − U1) +

1

Ci,0

∫
[U0 − U1] dt = 0

Un : Rp,n−1(Un − Un−1) +
1

Ci,n−1

∫
[Un,0 − Un−1] dt +

1

2

(
Ri,n−1 + 2ZRg

+ Ri,n

)
Un

+
1

2
(Li,n−1 + 2ZLg + Li,n)Vn + Rp,n(Un − Un+1) +

1

Ci,n

∫
[Un,0 − Un+1] dt = 0

for n = 1, . . . , N

UN+1 : Rp,N(UN+1 − UN) +
1

Ci,N

∫
[UN+1 − UN ] dt +

1

2
Li,NVN+1

+
1

2
Ri,NUN+1 + RM(UN+1 − UN+2) = 0

UN+2 : RM(UN+1 − UN+2) + LMVN+2 = 0

(A.19)

where circuits N + 1 and N + 2 denote the pre-mouth and mouth regions, respectively. The set
of equations reduces to N + 3 equations.

In order to prevent instabilities in the iteration process, some additional constraints are
built in.



Depth-kymography of vocal fold vibrations 3977

• All four variables are limited to a certain maximum value.
• All step sizes have a maximum and a minimum limit.
• In case the width of the mass is taken as variable, this width has a minimum value of half

the value in the rest position.

The flow in the steady-state situation (dc flow) can be calculated by assuming the
impedances of all inertias being zero and those of all compliances being infinite. Then
all local flows will be equal. Since some resistances are flow dependent, a quadratic equation
with the flow as the unknown variable results.
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