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Laplace Potential Distribution 

and Earnshaw’s Theorem 
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Presentations: 

• Electromagnetism: History 

• Electromagnetism: Electr. topics 

• Electromagnetism: Magn. topics 

• Electromagnetism: Waves  topics 

• Capacitor filling (complete) 

• Capacitor filling (partial) 

• Divergence Theorem 

• E-field of a thin long charged wire 

• E-field of a charged disk 

• E-field of a dipole 

• E-field of a line of dipoles 

• E-field of a charged sphere 

• E-field of a polarized object 

• E-field: field energy 

• Electromagnetism: integrations 

• Electromagnetism: integration elements 

• Gauss’ Law for a cylindrical charge 

• Gauss’ Law for a charged plane 

• Laplace’s and Poisson’s Law 

• B-field of a thin long wire carrying a 

current 

• B-field of a conducting charged 

sphere 

• B-field of a homogeneously 

charged sphere 
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Laplace and Earnshaw 

1. Electric Field equations:  

– Gauss’ Law and Potential Gradient Law 

2. Laplace and Poisson: derivation 

3. Laplace and Poisson in 1 dimension 

4. Charge-free space: Earnshaw’s Theorem 

– Finite-Elements method for Potential Distribution 

5. Laplace and Poisson in 2 and 3 dimensions 
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Electric Field Equations 
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Gauss: integral formulation: 

Potential: integral formulation: 

Id. differential formulation: 

Id. differential formulation: 
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Electric Field Lines and 

Equipotential Surfaces 
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Laplace and Poisson: derivation 

Gauss: 
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Laplace and Poisson in 1 dimension 
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Calculate V(x) for   = 0 by 

integration of Laplace equation 
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Boundary conditions: 
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Laplace and Poisson in 1 dimension 

0

2




 V

0

2

2










x

V

 = 0: free space (Laplace) 

 0: materials (Poisson) 

 

Calculate V(x) by integration 

of Poisson’s equation…. 
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Assume  =const.: 

Boundary conditions at x1 and x2  

  Parabolic behaviour 
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Laplace and Poisson in 1 dimension 
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Assume  =constant: 

Boundary conditions at x1 and x2  

Special case:  

x1=0 ; V1=0  and x2= a ; V2 = V0 
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Calculate V(x) and E(x) 
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Laplace and Poisson in 1 dimension 

Assume  =const.: 

Boundary conditions: 

 at x1 and x2  

Special case:  

x1=0 ; V1=0  and 

 x2= a ; V2 = V0 /0 x/a 
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Laplace in 1 dimension 
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Boundary conditions at x1 and x2 : 

)()( 12

12

1
1 VV

xx

xx
VxV 




-c 

V1 

V2 

x 

V 

x1 x2 

E 



Laplace and Earnshaw 12 

Laplace in 1 dimension: Earnshaw 
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Earnshaw:  

If no free charge present, then: 

Potential has no local maxima 

or minima. 

Consequences:  

1. V is linear function of position 

2. V at each point is always in 

between neighbours 
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Laplace in 1 dimension: Earnshaw 

Earnshaw:  

If no free charge present, then: 

Potential has no local maxima 

or minima. 

Consequences:  

1. V is linear function of position 

2. V at each point is always in 

between neighbours 

Numerical method for calculating 

potentials between boundaries: 

x 

V 

x1 x2 

V1 

V2 
1. Start with zero potential between 

boundaries 

2. Take averages between 

neighbours 

3. Repeat    and repeat and .... 
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Laplace in 2 dimensions: Earnshaw 

Earnshaw:  

If no free charge present, then: 

Potential has no local maxima 

or minima. 

Potential V=f (x,y) on S ? 

Solution of Laplace 
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Laplace / Poisson in 3 dimensions 

Potential V = f (x,y,z) ? 

Solution of Laplace/Poisson: 
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Boundary conditions: 

V1 , V2 and V3 = f (x,y,z) 
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Spatial charge density:  =f (x,y,z) 

Special cases: 

•  cylindrical geometry 

•  spherical geometry 

4-D plot needed !? 
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Laplace / Poisson in 3 dimensions 

Special case 1: Cylindrical  geometry 
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If r – dependence only: 

   and boundaries  will be f (r).  

Thus: V will be f (r) only 

Example: V=V1 at r1 and V2 at r2 , and =0 

Calculate V = V(r ) 
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Laplace / Poisson in 3 dimensions 

Special case 2: Spherical  geometry 
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If r – dependence only: 

   and boundaries  will be f (r).  

Thus: V will be f (r) only 

Example: V=V1 at r1 and V2 at r2 , and =0 

Calculate V = V(r ) 
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