Laplace Potential Distribution and Earnshaw's Theorem

© Frits F.M. de Mul

Presentations:

- Electromagnetism: History
- Electromagnetism: Electr. topics
- Electromagnetism: Magn. topics
- Electromagnetism: Waves topics
- Capacitor filling (complete)
- Capacitor filling (partial)
- Divergence Theorem
- E-field of a thin long charged wire
- E-field of a charged disk
- E-field of a dipole
- E-field of a line of dipoles
- E-field of a charged sphere
- E-field of a polarized object

- E-field: field energy
- Electromagnetism: integrations
- Electromagnetism: integration elements
- Gauss' Law for a cylindrical charge
- Gauss' Law for a charged plane
- Laplace's and Poisson's Law
- B-field of a thin long wire carrying a current
- B-field of a conducting charged sphere
- B-field of a homogeneously charged sphere

- **1. Electric Field** equations:
 - Gauss' Law and Potential Gradient Law
- 2. Laplace and Poisson: derivation
- 3. Laplace and Poisson in 1 dimension
- 4. Charge-free space: Earnshaw's Theorem
 Finite-Elements method for Potential Distribution
- 5. Laplace and Poisson in 2 and 3 dimensions

Electric Field Equations

Gauss: integral formulation:

$$\oint_{S} \boldsymbol{E} \bullet \boldsymbol{dS} = \frac{1}{\varepsilon_0} \iiint_{V} \rho \, dV$$

Id. differential formulation:

$$7 \bullet \mathbf{E}(x, y, z) = \frac{\rho(x, y, z)}{\varepsilon_0} \quad \left\{ \vec{e}_x \frac{\partial}{\partial x} + \ldots \right\} \bullet \left\{ E_x \vec{e}_x + \ldots \right\} = \frac{\partial E_x}{\partial x} + \ldots = \frac{\rho}{\varepsilon_0}$$

Potential: integral formulation:

$$V_B - V_A = -\int_A^B E \bullet dl$$

Id. differential formulation:

$$\boldsymbol{E} = -\nabla V \left\{ \vec{\boldsymbol{e}}_x \frac{\partial}{\partial x} + \ldots \right\} V(x, y, z) = \vec{\boldsymbol{e}}_x \frac{\partial V}{\partial x} + \ldots = -\vec{\boldsymbol{e}}_x E_x - \ldots$$

Laplace and Poisson: derivation

Gauss:	$\nabla \bullet \boldsymbol{E}(x, y, z) =$	$\frac{\rho(x, y, z)}{\varepsilon_0}$	
Potential:	$E = -\nabla V$		
Laplace / Poisson :	abla ullet E = - abla ullet abla	$V = -\nabla^2 V$	$r = \frac{\rho}{\varepsilon_0}$
$\vec{\mathbf{e}}_{\mathbf{x}} \frac{\partial}{\partial x} \bullet \vec{\mathbf{e}}_{\mathbf{x}} \frac{\partial}{\partial x}$	$\frac{V}{x} + \dots = -\frac{\rho}{\varepsilon_0}$		$\rho = 0$: free space (Laplace)
$\frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} + \frac{\partial^2 V}{\partial$	$+\frac{\partial^2 V}{\partial z^2} = -\frac{\rho}{\varepsilon_0}$	ırnshaw	ρ≠0: materials (Poisson)

$$\nabla^2 V = -\frac{\rho}{\varepsilon_0} \qquad \frac{\partial^2 V}{\partial x^2} = -\frac{\rho}{\varepsilon_0}$$

 $\rho = 0$: free space (Laplace) $\rho \neq 0$: materials (Poisson)

 \mathbf{V} E V_2 V_1 Χ \mathbf{X}_1 X_2 **-**C Laplace Calculate V(x) for $\rho = 0$ by integration of Laplace equation

$$\frac{d^2 V}{dx^2} = 0 \implies \frac{dV}{dx} = c = -E_x$$

$$\Rightarrow V(x) = cx + c'$$

Boundary conditions: V_1 at x_1 and V_2 at x_2 :

$$V(x) = V_1 + \frac{x - x_1}{x_2 - x_1} (V_2 - V_1)$$

$$\nabla^2 V = -\frac{\rho}{\varepsilon_0} \qquad \frac{\partial^2 V}{\partial x^2} = -\frac{\rho}{\varepsilon_0}$$

 $\rho = 0$: free space (Laplace) $\rho \neq 0$: materials (Poisson)

Calculate V(x) by integration of Poisson's equation....

$$\Rightarrow \frac{dV}{dx} = c - \frac{\rho}{\varepsilon_0} x = -E_x$$

$$\Rightarrow V(x) = cx - \frac{1}{2} \frac{\rho}{\varepsilon_0} x^2 + c'$$

Assume $\rho = \text{const.:}$ <u>Boundary conditions</u> at x_1 and x_2 \Rightarrow Parabolic behaviour

$$\nabla^2 V = -\frac{\rho}{\varepsilon_0} = \frac{\partial^2 V}{\partial x^2} = -\frac{\rho}{\varepsilon_0}$$

 $\rho = 0$: free space (Laplace) $\rho \neq 0$: materials (Poisson)

$$\Rightarrow V(x) = cx - \frac{1}{2} \frac{\rho}{\varepsilon_0} x^2 + c'$$

Assume ρ =constant: <u>Boundary conditions</u> at x_1 and x_2 <u>Special case</u>: $x_1=0$; $V_1=0$ and $x_2=a$; $V_2=V_0$ Calculate V(x) and E(x)

$$V(x) = -\frac{\rho x^2}{2\varepsilon_0} + \frac{\rho a x}{2\varepsilon_0} + \frac{V_0 x}{a}$$

$$= -\left[\frac{\rho}{\varepsilon_0}(-x+a) + \frac{V_0}{a}\right]$$

$$V(x) = -\frac{\rho x^2}{2\varepsilon_0} + \frac{\rho a x}{2\varepsilon_0} + \frac{V_0 x}{a}$$

Assume ρ =const.: <u>Boundary conditions</u>: at x_1 and x_2 <u>Special case</u>: $x_1=0$; $V_1=0$ and $x_2=a$; $V_2 = V_0$

Laplace in 1 dimension

$$\nabla^2 V = -\frac{\rho}{\varepsilon_0} = \frac{\partial^2 V}{\partial x^2} = -\frac{\rho}{\varepsilon_0}$$

 $\rho = 0$: free space (Laplace) $\rho \neq 0$: materials (Poisson)

$$\frac{d^2 V}{dx^2} = 0 \Rightarrow \frac{dV}{dx} = c = -E_x$$

$$\Rightarrow V(x) = cx + c'$$

Boundary conditions at x_1 and x_2 :

$$V(x) = V_1 + \frac{x - x_1}{x_2 - x_1} (V_2 - V_1)$$

Laplace in 1 dimension: Earnshaw

$$\frac{d^2 V}{dx^2} = 0 \implies \frac{dV}{dx} = c = -E_x \implies V(x) = cx + c$$

Earnshaw:

If no free charge present, then: Potential has no local maxima or minima.

Consequences:

- 1. V is linear function of position
- 2. V at each point is always in between neighbours

Laplace in 1 dimension: Earnshaw

Earnshaw:

If no free charge present, then: Potential has no local maxima or minima.

Consequences:

- 1. V is linear function of position
- 2. V at each point is always in between neighbours

Numerical method for calculating potentials between boundaries:

- 1. Start with zero potential between boundaries
- 2. Take averages between
- neighbours
- 3. Repeat and repeat and

Laplace in 2 dimensions: Earnshaw

Potential V=f(x,y) on S?

Earnshaw:

If no free charge present, then: Potential has no local maxima or minima.

Solution of Laplace $\nabla^2 V = 0$ $\left[\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right]V(x, y) = 0$

will depend on boundaries.

"Partial differential equation"

Laplace / Poisson in 3 dimensions

Spatial charge density: $\rho = f(x,y,z)$

Potential V = f(x,y,z)?

Boundary conditions: V_1 , V_2 and $V_3 = f(x,y,z)$

Solution of Laplace/Poisson:

$$\left[\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}\right] V(x, y) = -\frac{\rho}{\varepsilon_0}$$

will depend on boundaries.

4-D plot needed !?

Special cases:

- cylindrical geometry
- spherical geometry

Laplace / Poisson in 3 dimensions

Laplace / Poisson in 3 dimensions

