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Presentations:

Electromagnetism: History
Electromagnetism: Electr. topics
Electromagnetism: Magn. topics
Electromagnetism: Waves topics
Capacitor filling (complete)
Capacitor filling (partial)
Divergence Theorem

E-field of a thin long charged wire
E-field of a charged disk

E-field of a dipole

E-field of a line of dipoles
E-field of a charged sphere
E-field of a polarized object

E-field: field energy

Electromagnetism: integrations
Electromagnetism: integration elements
Gauss’ Law for a cylindrical charge
Gauss’ Law for a charged plane
Laplace’s and Poisson’s Law

B-field of a thin long wire carrying a
current

B-field of a conducting charged
sphere

B-field of a homogeneously
charged sphere
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1.

2.
3.
4.

D.

L aplace and Earnshaw

Electric Field equations:
Gauss’ Law and Potential Gradient Law

Laplace and Poisson: derivation
LLaplace and Poisson in 1 dimension

Charge-free space: Earnshaw’s Theorem
Finite-Elements method for Potential Distribution

Laplace and Poisson in 2 and 3 dimensions

Laplace and Earnshaw



Electric Field Equations

Gauss: integral formulation: ﬁ EedS = i”‘[p dVv
s €0 v

Id. differential formulation:

_p(xy.2) [ @ },Eq & _p
VeE(X Y,2)= . {exax+... {EE +..} ~ + .

Potential: integral formulation: r
Vg =V, =—[ E edI
A

Id. differential formulation:

E=-VV {q 0 } _ oV

e, —+...V(X,y,z2) =€, —+...=—€, E —...
X G = —



Electric Field Lines and
Equipotential Surfaces

V = const. *~
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Laplace and Poisson: derivation
px,y,2)

&

Gauss: VeE(X,V,2)=

Potential: E=-VV

Laplace / VeE —_VeVV = v/ = 2

Poisson : &,
éx i é oV — _P o = 0: free space
OX OX A (Laplace)
o # 0: materials
oV oV 52\/ 0 (Poisson)

—+
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Laplace and Poisson In 1 dimension

-C

Laplace a

o = 0: free space (Laplace)
p= 0: materials (Poisson)

Calculate V(x) for p=0 by
Integration of Laplace equation

=V (X) =CcX+C'

Boundary conditions:
V,atx,and V, at x, :

X—X
V(x) =V, + _; vV, -V,)
1

X2




Laplace and Poisson in 1 dimension

LY, p= 0: materials (Poisson)

&, OX” &,  Calculate V(x) by integration
of Poisson’s equation....

dVv
Y oLy E
dx Eo
=V (X) = (:x—%ﬁx2 +c'
€o
Assume p =const.:

Boundary conditions at x; and X,
= Parabolic behaviour
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Laplace and Poisson in 1 dimension

0: materials (Poisson
E X &
’ ° :V(x)zcx—%£x2+c'
€0
Assume p =constant:
E Boundary conditions at x, and X,
Special case:
X,=0;V,=0 and x,—a;V, =V,
Calculate V(x) and E(x)
2
X V(x)=—'OX +,oax+Vox
Vo 2, 2&, a
a 5 v
Laplace anc E(X) — _|:_ (_X + a) + _O:|
Eq a




Laplace and Poisson in 1 dimension

] y
h -.::;‘!:.. .
0 1] e 7 g 7
] ;f;’?fffffjfjf"" s
] i iy
Assume p =const.: : B
0.5 § ';f-"-!{lll".llf'!fﬁi‘fﬁ:'
T T T T T L

Boundary conditions: et
at x, and X, 7 4
Special case:

x,=0; V,=0 and
Xy= a, V2 — VO
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Laplace in 1 dimension

V2V: 1% @ZV_ o,

—— = o = 0: free space (Laplace)
&  OX &y

. dVv
- dx X
=V (X) =CcX+C'
Boundary conditions at x, and X, :
X X | X X — X
——— -C V(X) :V1 T : (Vz _Vl)
X, =%
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Laplace in 1 dimension: Earnshaw

Earnshaw:

If no free charge present, then:
= Potential has no local maxima
or minima.

Conseguences:

1. V is linear function of position
2.V at each point is always In
between neighbours
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Laplace In 1 dimension: Earnshaw

Earnshaw: Consequences:

If no free charge present, then: 1. V is linear function of position

Potential has no local maxima 2.V at each point is always in
or minima. between neighbours

V Numerical method for calculating
potentials between boundaries:

1. Start with zero potential between
boundaries

2. Take averages between
neighbours @

3. Repeat® and repeat and .... ==@=
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Laplace in 2 dimensions: Earnshaw

Potential V=f (x,y) on S ? Earnshaw:
\/ If no free charge present, then:
S Potential has no local maxima

or minima.

Solution of Laplace V%V =0
Sy -
;(2 +§yz V(x,y)=0

will depend o_n boundaries.

X/N\\d “Partial differential equation”
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Laplace / Poisson in 3 dimensions

Spatial charge density: p =f (X,y,2) Potential V = f (x,y,2) ?

Boundary conditions: Solution of Laplace/Poisson:
V,,V,and V,; =1 (x,y,2) 2 g2
>+ ——+— [V(X,y)=—
vi oX® oy® oz
v will depend on boundaries.
) 4-D plot needed !?
V2 H Special cases:
\/ « cylindrical geometry
3 » spherical geometry
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Laplace / Poisson in 3 dimensions

Special case 1: Cylindrical geometry
2 2
z VYV = 16(:£?)+£ 82+-62\/=—f1
or\_ or) r-o060° oz LA
If r — dependence only:
p and boundaries will be f (r).
Thus: V will be f (r) only
Y Example: V=V, atr, and V, atr, , and p=0

1d dV dVv dv c
r dr dr dr dr r

V(r)=c.Inr+c (cand c':const.)
Inr—Inr,

With boundaries : V(r)=V,+(V,-V,)
Inr,-Inr,




Laplace / Poisson in 3 dimensions

Special case 2: Spherical geometry

=| = r°— |+—— SN0 — |+——— [\
r{for\C or) resin@ oé 00) r°sin“6 op &,

0 If r — dependence only:

1 p and boundaries will be f (r).

Thus: V will be f (r) only

Example: V=V, atr,and V, atr, , and p=0
........ Calculate V = V(r)

y

N d ( ) dvj , dV dv C
................................ >—|Ir"—[=0 = r"—s=c = =—
4 o X ¥ m
> —1
V(r)=c.—+c¢ (cand c':con
r

With  boundaries : V(r) =V, +(V,-V,) 1r-1/g

1/r, -1/,



